278 research outputs found

    A systems immunology approach to GVHD defines skin-autonomous control of donor T cells

    Get PDF

    Mechanism of cigarette smoke condensate-induced acute inflammatory response in human bronchial epithelial cells

    Get PDF
    BACKGROUND: To demonstrate the involvement of tobacco smoking in the pathophysiology of lung disease, the responses of pulmonary epithelial cells to cigarette smoke condensate (CSC) — the particulate fraction of tobacco smoke — were examined. METHODS: The human alveolar epithelial cell line A549 and normal human bronchial epithelial cells (NHBEs) were exposed to 0.4 μg/ml CSC, a concentration that resulted in >90% cell survival and <5% apoptosis. Changes in gene expression and signaling responses were determined by RT-PCR, western blotting and immunocytofluorescence. RESULTS: NHBEs exposed to CSC showed increased expression of the inflammatory mediators sICAM-1, IL-1β, IL-8 and GM-CSF, as determined by RT-PCR. CSC-induced IL-1β expression was reduced by PD98059, a blocker of mitogen-actived protein kinase (MAPK) kinase (MEK), and by PDTC, a NFκB inhibitor. Analysis of intracellular signaling pathways, using antibodies specific for phosphorylated MAPKs (extracellular signal-regulated kinase [ERK]-1/2), demonstrated an increased level of phosphorylated ERK1/2 with increasing CSC concentration. Nuclear localization of phosphorylated ERK1/2 was seen within 30 min of CSC exposure and was inhibited by PD98059. Increased phosphorylation and nuclear translocation of IκB was also seen after CSC exposure. A549 cells transfected with a luciferase reporter plasmid containing a NFκB-inducible promoter sequence and exposed to CSC (0.4 μg/ml) or TNF-α (50 ng/ml) had an increased reporter activity of approximately 2-fold for CSC and 3.5-fold for TNF-α relative to untreated controls. CONCLUSION: The acute phase response of NHBEs to cigarette smoke involves activation of both MAPK and NFκB

    Loss of Receptor on Tuberculin-Reactive T-Cells Marks Active Pulmonary Tuberculosis

    Get PDF
    BACKGROUND: Tuberculin-specific T-cell responses have low diagnostic specificity in BCG vaccinated populations. While subunit-antigen (e.g. ESAT-6, CFP-10) based tests are useful for diagnosing latent tuberculosis infection, there is no reliable immunological test for active pulmonary tuberculosis. Notably, all existing immunological tuberculosis-tests are based on T-cell response size, whereas the diagnostic potential of T-cell response quality has never been explored. This includes surface marker expression and functionality of mycobacterial antigen specific T-cells. METHODOLOGY/PRINCIPAL FINDINGS: Flow-cytometry was used to examine over-night antigen-stimulated T-cells from tuberculosis patients and controls. Tuberculin and/or the relatively M. tuberculosis specific ESAT-6 protein were used as stimulants. A set of classic surface markers of T-cell naive/memory differentiation was selected and IFN-gamma production was used to identify T-cells recognizing these antigens. The percentage of tuberculin-specific T-helper-cells lacking the surface receptor CD27, a state associated with advanced differentiation, varied considerably between individuals (from less than 5% to more than 95%). Healthy BCG vaccinated individuals had significantly fewer CD27-negative tuberculin-reactive CD4 T-cells than patients with smear and/or culture positive pulmonary tuberculosis, discriminating these groups with high sensitivity and specificity, whereas individuals with latent tuberculosis infection exhibited levels in between. CONCLUSIONS/SIGNIFICANCE: Smear and/or culture positive pulmonary tuberculosis can be diagnosed by a rapid and reliable immunological test based on the distribution of CD27 expression on peripheral blood tuberculin specific T-cells. This test works very well even in a BCG vaccinated population. It is simple and will be of great utility in situations where sputum specimens are difficult to obtain or sputum-smear is negative. It will also help avoid unnecessary hospitalization and patient isolation

    Polymorphic Variation in TIRAP Is Not Associated with Susceptibility to Childhood TB but May Determine Susceptibility to TBM in Some Ethnic Groups

    Get PDF
    Host recognition of mycobacterial surface molecules occurs through toll like receptors (TLR) 2 and 6. The adaptor protein TIRAP mediates down stream signalling of TLR2 and 4, and polymorphisms in the TIRAP gene (TIRAP) have been associated with susceptibility and resistance to tuberculosis (TB) in adults. In order to investigate the role of polymorphic variation in TIRAP in childhood TB in South Africa, which has one of the highest TB incidence rates in the world, we screened the entire open reading frame of TIRAP for sequence variation in two cohorts of childhood TB from different ethnic groups (Xhosa and mixed ancestry). We identified 13 SNPs, including seven previously unreported, in the two cohorts, and found significant differences in frequency of the variants between the two ethnic groups. No differences in frequency between individual SNPs or combinations were found between TB cases and controls in either cohort. However the 558C→T SNP previously associated with TB meningitis (TBM) in a Vietnamese population was found to be associated with TBM in the mixed ancestry group. Polymorphisms in TIRAP do not appear to be involved in childhood TB susceptibility in South Africa, but may play a role in determining occurrence of TBM

    Innate Recognition of Fungal Cell Walls

    Get PDF
    The emergence of fungal infections as major causes of morbidity and mortality in immunosuppressed individuals has prompted studies into how the host recognizes fungal pathogens. Fungi are eukaryotes and as such share many similarities with mammalian cells. The most striking difference, though, is the presence of a cell wall that serves to protect the fungus from environmental stresses, particularly osmotic changes [1]. This task is made challenging because the fungus must remodel itself to allow for cell growth and division, including the conversion to different morphotypes, such as occurs during germination of spherical spores into filamentous hyphae. The cell wall also connects the fungus with its environment by triggering intracellular signaling pathways and mediating adhesion to other cells and extracellular matrices. Here, important facts and concepts critical for understanding innate sensing of the fungal cell wall by mammalian pathogens are reviewed

    Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals suppression of host immune genes

    Get PDF
    Background Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. In the present study, we have analysed the transcriptome of peripheral blood leukocytes (PBL) from eight M. bovis-infected and eight control non-infected age-matched and sex-matched Holstein-Friesian cattle using the Affymetrix® GeneChip® Bovine Genome Array with 24,072 gene probe sets representing more than 23,000 gene transcripts. Results Control and infected animals had similar mean white blood cell counts. However, the mean number of lymphocytes was significantly increased in the infected group relative to the control group (P = 0.001), while the mean number of monocytes was significantly decreased in the BTB group (P = 0.002). Hierarchical clustering analysis using gene expression data from all 5,388 detectable mRNA transcripts unambiguously partitioned the animals according to their disease status. In total, 2,960 gene transcripts were differentially expressed (DE) between the infected and control animal groups (adjusted P-value threshold ≤ 0.05); with the number of gene transcripts showing decreased relative expression (1,563) exceeding those displaying increased relative expression (1,397). Systems analysis using the Ingenuity® Systems Pathway Analysis (IPA) Knowledge Base revealed an over-representation of DE genes involved in the immune response functional category. More specifically, 64.5% of genes in the affects immune response subcategory displayed decreased relative expression levels in the infected animals compared to the control group. Conclusions This study demonstrates that genome-wide transcriptional profiling of PBL can distinguish active M. bovis-infected animals from control non-infected animals. Furthermore, the results obtained support previous investigations demonstrating that mycobacterial infection is associated with host transcriptional suppression. These data support the use of transcriptomic technologies to enable the identification of robust, reliable transcriptional markers of active M. bovis infection.This work was supported by Investigator Grants from Science Foundation Ireland (Nos: SFI/01/F.1/B028 and SFI/08/IN.1/B2038), a Research Stimulus Grant from the Department of Agriculture, Fisheries and Food (No: RSF 06 405) and a European Union Framework 7 Project Grant (No: KBBE-211602-MACROSYS). KEK is supported by the Irish Research Council for Science, Engineering and Technology (IRCSET) funded Bioinformatics and Systems Biology PhD Programme http://bioinfo-casl.ucd.ie/PhD

    Efficient precision quantization in AdS/CFT

    Get PDF
    Understanding finite-size effects is one of the key open questions in solving planar AdS/CFT. In this paper we discuss these effects in the AdS_5xS^5 string theory at one-loop in the world-sheet coupling. First we provide a very general, efficient way to compute the fluctuation frequencies, which allows to determine the energy shift for very general multi-cut solutions. Then we apply this to two-cut solutions, in particular the giant magnon and determine the finite-size corrections at subleading order. The latter are then compared to the finite-size corrections from Luscher-Klassen-Melzer formulas and found to be in perfect agreement.Comment: 32 pages, 5 figures; v2: typos corrected, refs adde

    Novel mutations in TLR genes cause hyporesponsiveness to Mycobacterium avium subsp. paratuberculosis infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll like receptors (TLR) play the central role in the recognition of pathogen associated molecular patterns (PAMPs). Mutations in the TLR1, TLR2 and TLR4 genes may change the ability to recognize PAMPs and cause altered responsiveness to the bacterial pathogens.</p> <p>Results</p> <p>The study presents association between TLR gene mutations and increased susceptibility to <it>Mycobacterium avium </it>subsp. <it>paratuberculosis </it>(MAP) infection. Novel mutations in TLR genes (TLR1- Ser150Gly and Val220Met; TLR2 – Phe670Leu) were statistically correlated with the hindrance in recognition of MAP legends. This correlation was confirmed subsequently by measuring the expression levels of cytokines (IL-4, IL-8, IL-10, IL-12 and IFN-γ) in the mutant and wild type moDCs (mocyte derived dendritic cells) after challenge with MAP cell lysate or LPS. Further <it>in silico </it>analysis of the TLR1 and TLR4 ectodomains (ECD) revealed the polymorphic nature of the central ECD and irregularities in the central LRR (leucine rich repeat) motifs.</p> <p>Conclusion</p> <p>The most critical positions that may alter the pathogen recognition ability of TLR were: the 9<sup>th </sup>amino acid position in LRR motif (TLR1–LRR10) and 4<sup>th </sup>residue downstream to LRR domain (exta-LRR region of TLR4). The study describes novel mutations in the TLRs and presents their association with the MAP infection.</p
    • …
    corecore